
Optimal Implementation of DSP Functions in an FPGA System

The following description shows how DSP functions – FFT and multiplications – can be

optimally designed to suit an FPGA by using its architecture to advantage and by considering

a number of possible design approaches.

The Challenge

An FPGA system was to be designed for a signal processing application involving a 128-point

Fast Fourier Transform with Hamming weighting. The absolute values of the transformed

spectral values were to be calculated following the FFT. The resulting values were to be

sorted according to size. One complete FFT stage was to be completed within 256ns. The

input data to the FFT - held ready in two’s complement form in internal RAM blocks - was 8-

bit wide. The precision was to be increased by one bit after each FFT stage, so that the data

attained a width of 15 bits by the last, i.e. seventh, stage. These were the conditions.

FPGA 1
XCV1000

Fast Fourier
Transformation

Formation of
Absolute Value

Sorting
Algorithm

64x
15 bit
data
serial
real val.

128x
8 bit
data
serial

Hamming
Weighting

&
Data

Encoding

64x
15 bit
data
parallel

8x
8 bit
data
parallel
2’s compl.

64x
15 bit
result
data

FPGA 2
XCV1000

64x
15 bit
data
serial
imag. val

Schematic Block Diagram

It was decided to implement these functions, along with another couple of tasks, in two Xilinx

XCV1000-6 FPGAs. Unfortunately the 5V compatibility requirements of the I/Os did not

allow an upgrade to the faster and larger Virtex-E family, neither was it possible to introduce

a further power supply layer to the board.

One approach to the realisation of these functions using a combination of FPGA and DSP

chips was rejected, since the required performance would have necessitated too many DSPs

working in parallel. The functionality of the FPGAs was described using the hardware

description language VHDL and by putting the Xilinx Core Generator to good use. Synthesis

was carried out using a generic tool. The Xilinx Floorplanner was indispensable for the

backend flow, allowing component placement in a core with an impressive 98% LUT

utilisation.

VHDL

Hamming Window

Applying a Hamming Window to the input data prior to the FFT helps reduce the number of

inaccurate spectral lines arising owing to the discrepancy between the width of the sampling

window and the periodicity of the input signal. In practice, applying a Hamming Window to

the input involves multiplying all the spectral values with a set of predefined coefficients. In

this case, 128 input data words, each 8 bits wide (a total of 16 data words are decoded from

each of the eight incoming data streams), are each multiplied with an eight-bit coefficient to

give an eight-bit result with a precision sufficient for this case.

It was clear from the outset that implementing this design on an FPGA would demand a very

high utilisation, so that resources would have to be carefully allocated. On the other hand, the

speed of computation played a very important role, since the next set of input data would be

ready and waiting after 256ns. For this reason, several approaches to the realisation were

considered, and various possibilities were tried out:

1. Parallel construction of shared 8*8 bit multipliers using Core Generator elements

2. 8*8 bit multipliers described in VHDL using register stages

3. VHDL description of serial multipliers

4. Parallel construction of 8*8 bit constant multipliers

For the second approach, the 8*8 bit multiplication was described with combinational logic

(non-clocked), followed by the required number of register stages. The synthesis tool

generated a clocked multiplication by assigning the register stages as appropriate within the

multiplier. The main disadvantage with this approach is that the multiplier would have had to

be replicated 128 times, which was just not possible with the resources available. The third

approach also required the replication of a serial multiplier 128 times, which would have

required a great many resources, if not quite as many as required by the second approach. The

construction of a serial multiplier is described in more detail in the following FFT section.

Implementing constant multipliers – the fourth approach – would of course have been ideal

for realisation of the Hamming Weighting Window, however the 128 multipliers required in

this case would have needed more than the available resources. Most suitable therefore, on

account of the large number of simultaneous multiplication operations required, was the first

approach.

In all, only eight parallel multipliers were constructed, each of which was used 16 times

within each cycle. Since a new data set is available every 256 ns, exactly 16 multiplications

can be performed using a system clock with 16ns period. The coefficients are stored in eight

ROMs, each 16 words deep. The ROMs are addressed using the addresses for the RAMs in

which the input data is stored. This allows 128 parallel multiplications to take place within the

allotted 256ns using only eight multipliers. Following the coefficient multiplication stage, the

data packets exiting each multiplier undergo parallel/serial conversion and are subsequently

divided into 16 serial data streams for further processing in the following FFT stage.

DataIn 1
8bit parallel

RAM 1

ROM 1

1
2
.
.
.
.
.
.

16

1
2
.
.

16

Mult 1
PAR

to
SER

DeMux1

DataOut 1
DataOut 2
DataOut 3
DataOut 4
DataOut 5
DataOut 6

Data 1 DataOut 7
DataOut 8
DataOut 9
DataOut 10
DataOut 11
DataOut 12
DataOut 13
DataOut 14
DataOut 15
DataOut 16

DataIn 8
8 bit parallel

RAM 8

1
2
.
.
.
.
.
.

16
 Mult 8

ROM 8

1
2
.
.

16

PAR
to

SER

DeMux8

DataOut 113
DataOut 114
DataOut 115
DataOut 116
DataOut 117

Data 16 DataOut 118
DataOut 119
DataOut 120
DataOut 121
DataOut 122
DataOut 123
DataOut 124
DataOut 125
DataOut 126
DataOut 127
DataOut 128

Control

write8

write1

read1

read8

demux 1

demux 8

FPGA 1
Hamming
Weighting

8bit parallel

8bit
parallel

8bit
parallel

Data Decoding and Hamming Weighting

FFT

The Fourier Transform is used to determine the constituent frequencies of a time domain

signal so that the signal can be described in the frequency domain, where it is easier to

perform certain processing functions. The time domain signal is observed over a particular

duration (sampling window) and sampled. The samples are used to calculate the frequency

spectrum of the observed signal. A periodic signal with a frequency of f0 Hz would, under

ideal conditions (well-chosen sampling window, no rounding errors), yield an amplitude

maximum at frequency f0. The Fast Fourier Transform (FFT) allows optimisation of the

computational effort by parallel processing of the input signal in the time domain.

The 128-point FFT to be realised was built up in an entirely modular manner, in order to

describe each module optimally with respect to data width and the required number of

computations, and to reproduce each module only as often as necessary. As mentioned in the

introduction, the FFT consists of seven stages (128 points = 27). The input data is eight bits

wide – the result of the Hamming weighting – and increases by one bit at each stage to attain

the precision required for this application.

PE1

Data 1

DataOut 1 (real)

DataIn128 (real)

DataIn1 (real)

DataOut 1 (imag)

DataOut 64 (imag)

8 bit serial
results fr om
hamming
weighti ng

15 bit serial

Stage 1 Stage 7

PE64

DataOut 64 (real)

PE1

PE64

FPGA 1
FFT

FFT consisting of seven Processing Stages

Each stage is in turn divided into the required 64 Butterfly processor elements. “Butterfly”

refers to the characteristic construction of the processor element. Two data streams are input

to the Butterfly, where, in its most elaborate form, the inputs represent complex numbers.

These data streams consist of sine and cosine elements. The output of the Butterfly comprises

two (usually complex) data streams. The computations within a Butterfly can be reduced to

four real multiplications and six real additions, or three real multiplications and seven real

additions, depending on which calculation can best be simplified.

 X

 +

 +

 +

 +

DataIn 1 (real)

DataIn 1 (imag)

DataIn 2 (real)

DataIn 2 (imag)

-

-

DataOut 1 (real)

DataOut 1(imag)

DataOut 2 (real)

DataOut 2 (imag)

X

X

X

X

cos(pi*k/8)

-sin(pi*k/8)

-sin(pi*k/8)

cos(pi*k/8)

 +

 +

-
(a)

(b)

(out)

Complex Butterfly PE

For 128 input data streams, 64 Butterfly PEs per FFT stage have to be constructed. The data

remains in two’s complement form all through the FFT. To keep the entire structure as simple

as possible, it is necessary to consider which reductions can be carried out within each PE.

For example, no complex data is present at the first stage, i.e. the imaginary elements in the

PE can be ignored. Furthermore, the results of the multiplication with sine and cosine values

of certain angles are easy to compute and do not require an entire Butterfly PE construction.

For the construction of a complex PE, several possible approaches were tried as for the

Hamming Weighting already described. For realising the multiplications, essentially the same

approaches as in the previous chapter were considered. The possibilities for realising the

additions were easy to determine – either serial or parallel, depending on the type of the

preceding multiplications.

Only the serial multipliers proved to be able to deliver the desired result, since all other

approaches would have led to more than 100% utilisation of the FPGA. After all, several

hundred multiplications are required, with increasing width. A serial multiplication with

two’s complement numbers is constructed as follows:

For each calculation, two multiplications and the subsequent addition or subtraction are

combined (cf. “Complex Butterfly PE”). The following two signed terms arise

Acos(x) – Bsin(y) and Acos(x) + Bsin(y)

Where x and y are constant for each Butterfly PE, and A and B represent the numbers to be

multiplied. Under closer examination of the first term, we can see that, if A and B can only

take on values of 0 or 1, there are only four possible results:

0, -sin(y), cos(x) and cos(x) –sin(y).

These values are stored in ROMs and addressed using the address resulting from combining

the data streams A and B. The ROM outputs then have to be accumulated together, since the

ROM table has to be addressed a total of eight times for an 8-bit serial multiplication. The

configurable accumulator of the Xilinx Core Generator is used to this end. Note that due to

the two’s complement representation of the values, the most significant bit must be subtracted

and not added. Furthermore, care must be taken to erase the ROM contents at the address after

each accumulation iteration, since these would present erroneous initial values for the next

iteration.

The results at the outputs are now ready, albeit in parallel form, and must therefore undergo

another parallel-serial conversion. Furthermore, the timing must be adapted to the duration of

the processing cycle. Since new data arrives every 256ns, it makes sense to maintain this

time-frame throughout all stages. This is achieved by using area-efficient SRLs (Shift

Register LUTs). SRLs are by no means new components, they simply feature an alternative

switching within the LUT of the CLB. In addition to other more complex functions, they can

incorporate a shift register of up to 16 bits in length, and are therefore very economical as

regards area. The shift registers become shorter and shorter with each stage of the FFT, since

the relevant data of the serial data stream increases by one bit at each FFT stage, so that the

throughput through the functional part takes longer. Since the last stage is 15 bits wide

however, there is still enough time for the necessary calculations.

ROM

a
b

4
n

ACCU

D Q
+/- n PAR

2
SER

SHIFT
out

Serial Multiplication

As mentioned already, the multiplication operation described contains an addition or

subtraction. This proves to be advantageous, so that only four separate additions have to be

performed per PE. It is fairly simple to construct a serial addition in the conventional manner.

In this case however, we have to take the two’s complement representation into consideration

as well as a possible carry bit. Separate function terms are constructed for calculating the sum

and carry bits, and control logic ensures that the sign bit has no adverse effect on the carry bit.

Since the results of the serial addition and the serial multiplication are to be presented

simultaneously, the results of the addition, this first bit of which is available after only one

clock, are delayed by 15 clocks using an SRL.

The value to be transformed passes through all seven stages and grows by one bit at each

stage, so that the results of this FFT present themselves in 15-bit serial form at the outputs.

The 128 data streams are essentially the interface between the two FPGAs (cf. “Schematic

Block Diagram”)

 Absolute Value

 The absolute value of a complex number is usually calculated by squaring the real and

imaginary parts, summing these and then calculating the square root of the sum. Since the

absolute values in this case are only needed for a sorting operation, we can dispense with the

square root. However, squaring means that two 15-bit values must be multiplied together, and

this a total of 64 times. This gives in all 128 15-bit by 15-bit multiplications and 64 31-bit

additions. None of the various possibilities considered yielded a solution that would have had

room in the FPGA whilst satisfying the timing requirements. This method of calculating the

absolute value could therefore not be implemented.

An approximation formula was used instead, which fortunately does not adversely affect the

result from a system point of view. To obtain the approximate value, the imaginary part is

compared to the real part, and half of the smaller value is added to the larger value. Greatest

errors arise only when both imaginary and real parts are equal.

For practical purposes, the serial data from the FFT must first undergo a serial-parallel

conversion. Then the presence of negative values must be determined. Should this be the case,

a two’s complement conversion is performed, since only the positive values are relevant for

calculating the absolute value of the complex number. Two’s complement conversion

involves inverting all the bits and then adding a 1.

This is achieved by EXOR-ing in a loop all the bits with the sign bit. If the sign bit is 0, the

original bit values remain unchanged, if the sign bit is 1, the original bits are inverted. All that

remains is to add the sign bit to the result to give the smallest possible realisation in hardware

of a two’s complement conversion.

Comparing the two positive values, halving the lesser value by a bit-shift to the right, and

adding the two values are all described in VHDL in such a way that the synthesis tool

recognises what is happening and utilizes the appropriate soft macros accordingly.

Sort

The Sorter has to sort the absolute values according to size. The biggest challenge here was to

sort the 15-bit values within the available 256ns, ready in time for the next set.

To achieve this performance, it was necessary to double the clock frequency to 125MHz. This

was achieved, skew-free, by implementing a DLL (Delay-Locked Loop) on the FPGA. Since

32 clock cycles are now available, a hierarchical comparison tree could be built for the

parallel input data, in which pairs of values are compared with each other. In the first stage,

32 pairs of values are compared, the second stage takes the results of the first stage and uses

these to compare 16 value pairs, and so on until the last – sixth – stage compares the

remaining two values. Six clock cycles are thus required to determine the largest value. In the

space of 32 clocks, the five largest values can therefore be determined from among the 64

candidates. The largest value found in each case must of course be excluded from the

subsequent comparisons by masking it out, otherwise the same value would be found each

time. Since 30 clock cycles are required for the location of the five largest values (six clocks

for each iteration through the comparison tree), and only 32 clocks are available in all, the

masking must be done asynchronously. These asynchronous reset pulses, which had to be

applied within the available time, caused the greatest difficulties as regards timing when the

netlist was being generated.

Conversion to Gates

The interface between the first and second Virtex chip is located between the FFT and

absolute value calculation. At this point, the data are presented in serial form, thereby

satisfying the I/O capacities. Since the design is particularly Core-intensive, the synthesis,

which regards the Cores as black boxes, was able to run through quite rapidly. However, it

turned out that an automatic place-and-route was not possible with these chips. The first chip

(performing Hamming Weighting and FFT) is utilized to 98%, whereby a great advantage is

that the data flow is very straightforward.

The data flow in the second chip is also quite straightforward while calculating the absolute

values, but becomes more complicated when we reach the Sorter, since a large value located

by the comparison tree has a direct influence on all the preceding stages of the tree. Further

difficulties in placing the components in this FPGA, and particularly when routing, is the fact

that the second FPGA has several other functions as well as all of the block RAMs and a

multitude of nets with high fanouts from the centre of the chip to the edges, which is where

the block RAMs are located. This problem was addressed by replicating the functions driving

these nets.

The entire structure for both chips had to be created by manual placement, which turned out

to be very demanding. It was even necessary to change the predefined placement macros for

certain Core elements, in order to be able to place them closer to other elements. The Xilinx

back end tools processed the design quite rapidly with the aid of the generated floorplan files,

and yielded the desired result which was then verified by static timing analysis and

appropriate timing simulations.

Conclusion

To conclude this - at times very detailed description - it is worth noting that, for this

application, the effort in trying out various approaches using small examples with an eye

towards timing and the available resources certainly paid off, since without this structured and

detailed preparatory work, the entire project would have capitulated due to the complexity of

the functions.

The design was optimally adapted to suit the technology, for which detailed knowledge was

required. This knowledge, combined a good measure of stamina and a willingness to try new

approaches, made the realisation of the design possible.

A different chip with a different technology would certainly have demanded entirely different

approaches to a solution. For example, looking at the Xilinx VirtexII family – which could

not be implemented at the time – a realisation of this design would have been quite different,

and in some places would have been considerably easier owing to the availability of the

parallel multipliers. However, these chips will also doubtlessly be faced with designs which

take them to their limits, demanding experience and an in-depth knowledge of the tools and

technology.

